Chombo-Crunch and Vislt for carbon
sequestration and in-transit data analysis
using burst buffers

Andrey Ovsyannikov (NERSC),
Melissa Romanus (Rutgers U.),
Brian Van Straalen (LBL), Gunther Weber (LBL),
David Trebotich (LBL)

. April 18-21, 2016
U.S. DEPARTMENT OF lce O
© ENERGY 7o Glendale, AZ




OUtIine m YEAR?

* Motivation

« Conventional I/O and alternatives

« Burst Buffer architecture

* Proposed approach: asynchronous workflow
« Chombo-Crunch example

* Results

« Conclusions

EEEEEEEEEEEE Office of

ENERGY Science




Motivation  NERSC/ s

Emerging exascale systems one has to deal with:

 Growing amount of data at an unprecedented rate

+ Insufficient bandwidth of persistent storage media. Growing
gap between computation and 1/O rates

« Scientific workflows are getting more complex. Exchange of
data between different workflow components is getting
challenging

Need of alternatives to conventional post-processing approach
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Different data analysis methods
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Comparison of data analysis execution methods (Prabhat & Koziol, 2015)
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Burst Buffer architecture

Burst Buffer Nodes

IO Nodes

« Current configuration: 850TB on 144 BB nodes (288 SSDs)
« >1.5 PB total coming with Cori Phase 2
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Proposed in-transit workflow

Workflow components:

Chombo-Crunch
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Slurm implementation

Allocate BB capacity mmp|
Stage in restart file m—

Run each component

Stage output file to PFS
—

% U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science

#!/bin/bash

#SBATCH --nodes=1040

#SBATCH --job-name=shale

#DW jobdw capacity=200TiB access mode=striped type=scratch

#DW stage in type=file source=/pfs/restart.hdf5 destination
=$DW_JOB_STRIPED/restart.hdf5

### Load required modules

module load visit

ScratchDir="$SLURM SUBMIT DIR/ output.$SLURM JOBID"

BurstBufferDir="${DW_JOB_ STRIPED}"

mkdir $ScratchDir

stripe large $ScratchDir

NumTimeSteps=2000

EncoderInt=120

RestartFileName="restart.hdf5"

ProgName="chombocrunch3d.Linux.64.CC.ftn.OPTHIGH.MPI.PETSC.

ex"

ProgArgs=chombocrunch.inputs

ProgArgs="$ProgArgs check file=${BurstBufferDir}check
plot file=${BurstBufferDir}plot pfs path to checkpoint=
${ScratchDir}/check restart file=${BurstBufferDir}${
RestartFileName} max_ step=$NumTimeSteps"

### Launch Chombo-Crunch

srun -N 1024 -n 32768 $ProgName $ProgArgs > log 2>&l &

### Launch VisIt

visit -1 srun -nn 16 -np 512 -cli -nowin -s VisIt.py &

### Launch Encoder

./encoder.sh -pngpath $BurstBufferDir -endts $NumTimeSteps
-1 $EncoderInt &

wait

### Stage-out movie file from Burst Buffer

#DW stage out type=file source=$DW_JOB_ STRIPED/movie.mp4
destination=/pfs/movie.mp4
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Chombo-Crunch

pH on crushed calcite in capillary tube Transport in fractured

Simulates pore scale reactive transport pme=s
processes associated with carbon
sequestration

Applied to other subsurface science Flooding In fractured Marcellus O, difusion in Kansas 2

areas: - e

* Hydrofracturing

» Used fuel disposition (Hanford salt
repository modeling)

Extended to engineering applications:
« Lithium ion battery electrodes
» Paper manufacturing (hpc4mfg)
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Scaling study for 512 to 32768 MPI tasks for 1/O.
Number of compute nodes to BB nodes is fixed

at 16:1.
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In-transit visualization: Example 1 m

Reactive transport in dolomite:
Simulation performed on Cori Phase 1: 512 cores used by Chombo-Crunch,
64 cores by Vislt, 144 Burst Buffer nodes for I/O. Plot file size 8GB

DB: plot.nx384.step0000400.3d.hdf5
Cycle: 400 Time:0.28654

— 4.454e-08
— 3.340e-08

2.227e-08

a0

— 0.000
Max: 4.454e-08
Min: 0.000
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wallclock time (sec)

Wall clock time history

With 1/O to Burst Buffer
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In-transit visualization: Example 2 m

Reactive transport in shale
Simulation performed on Cori Phase 1: 32768 cores used by Chombo-Crunch,
512 cores by Vislt, 144 Burst Buffer nodes for I/O. Plot file size 290GB

DB: plot.nx1920.step0000600.3d.hdf5
Cycle: 600 Time:1.40771e-06
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Compute time vs I/0 time

(a) High intensity 1/O: write plot file every timestep, checkpointing every 10 timesteps
(b) Medium intensity 1/O: write plot file every 10 timesteps, checkpointing every 100 timesteps
(c) Low intensity 1/O: write plot file every 100 timesteps, checkpointing every 500 timesteps
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Summary for 2 benchmarks

Shale problem Dolomite problem
I/O to Lustre I/Oto BB 1/O to Lustre I/O to BB

# of timesteps 670 20000

plot file size 288.8 GiB 7.46 GiB
checkpoint size 180 GiB 6.12GiB
Chombo-Crunch compute time per ts 45.66s 9.87s
averaged time of writing 1 checkpoint 136.8s 38.4s 47.28s 1.47s
averaged time of writing 1 plot file 58.4s 33s 1445s 0.62s
Percentage of Chombo-Crunch I/O: I/O pattern (a) 61% 13.5% 66% 13.8%
Percentage of Chombo-Crunch I/O, 1/0O pattern (b) 13.6% 1.5% 16.3% 0.77%
Percentage of Chombo-Crunch I/O, I/O pattern (c) 1.8% 0.2% 2.36% 0.126%
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Conclusions NGF

d In-transit workflow has been proposed and its performance has
been assessed on a couple of application examples of Chombo-
Crunch subsurface simulation code

O First results show definite I/0 improvement and reduction of the
overall end-to-end run time

O Utilizing NVRAM memory allows Chombo-Crunch to move to
every timestep “postprocessing” while only changing roughly
20 lines of source code in Chombo

4  Future work:

« Dynamic component load balancing

* Managing burst buffer capacity

« Component signaling

 Including additional components into workflow (e.g. pore
graph extractor)

Office of

..*“‘i’""e% U.S. DEPARTMENT OF
Y <
W ENERGY science




Burst Buffer Architecture Reality Gk

BB nodes scattered throughout HSN fabric &ere o

Glenn Lockwood

2 BB blades/chassis (12 nodes/cabinet) in Phase |
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